. final

® Sega Basic Revealed
® LEasycode

® Parallel Resistors

® Sega Computer . .

MARCH/JUNE 1987

R,

EGA

C
=
Ll S
= =
- N
‘o I

&
=

o
O ¢
O &

&

BUT!!
POSEIDON SOFTWARE

P.O. Box 277, Tokoroa
Phone (0814) 67-105

IS ALIVE AND WELL

CONTENTS

- SEGA

ICOMPUTER

Sega Basic Revealed

Easycode

The official magazine of Parallel Resistors

the Sega User Club, New
Zealand.

Sega Computer . . . final

Registered as a magazine at the CPO Wellington, NeWd Zealand.

EDITORIAL

EDITORIAL MAR/JUNE DOUBLE ISSUE

Due a change in my business direction Sega Software Support
closed down on March 31. -

This double issue of Sega Computer is the last to be
published by Sega Software and completes the 1986-87
subscription year.

DO NOT DESPAIR!!!!

Geotf Crawford from Poseidon Software (a well Known name in
S€ega clrcles) has taken over the operation from this date and
~all the current stocks sold by Sega Software will continue to
be sold by Geoff, together with all the excellent programs
produced by Poseidon.

All enquiries and re-subscriptions, after this date, should
be forwarded to Poseidon Software at P O Box 277 Tokoroa.

This FINAL issue from Sega Software includes almost every bit
ot information a Sega owner would want to know. -

Contents include an article on Easycode (a simulated machine
code for beginners) from "Computing Today', complete with
programs adapted from the originals especlally for the Sega.
We have also reproduced parts of the disk drive manual,
relevant to the operation of the Sega computer - not just for
disk drive owners - it's all the information that was not
iIncluded in the Basic Manual and is necessaary ftor using your
Sega to it's fullest capacity. The final part of Brian
Brown's Book ‘The Sega Computer' makes this 1ssue a
comprehensive manual in its own right. |

DEAR EDITOR

[would like to know the answer to a question which is:

(a) Why are original Sega games like Star Trek, Zaxon and Buck
Rogers made for the Commodore computer but have never
come out for the Sega computer?

(b) Are Flicky or Lode Runner ever likely to be in stock?

Stewart Parkes, Papakura.

EDITOR’S REPLY
Sega Japan can give us no reason.

DEAR EDITOR

I would like to thank you for your prompt response to my
application to join your Sega User Club last year. [am very
impressed with what [have seen of your magazine so far, it is
way out in front of anything I have seen in Australia.

There is something | would like to mention if | could. The
KARATE program featured in the Jul/Aug issue looked as
though it would be tremendous, but it was a very big let down
after hours of typing to find there were still gremlins in the
program. The subsequent issue made no mention of any
corrections and although | debugged it, | could still not get to
run properly with a disk drive. Other local Sega owners have
not been able to work out what was wrong either.

Andrew Alliston, Cardiff, NSW, Australia.
EDITOR’S REPLY

To run this program on a disk drive it is necessary to remove
all the REM statements. To our knowledge there are no other
bugs and the program runs perfectly on both tape and disk on
our Sega.

DEAR EDITOR

(a) Regarding B C R Davis’ problem with Jet Ranger, I had the
same problem and found I had typing errors. Lines 10-20-30
with the incorrect number of ‘As’ and Data lines incorrect.
[f he still has problems he can send me a tape and I'll send
him a copy.

(b) In the front of our magazine is a note about contributions
being the origianl work of the author, but there are two
programs by Jan Jacobsen in the Nov/Feb issue which were
written by Tim Hartnell. Gomoku and Chess are from his
book ‘Giant Book of Computer Games’. Gomoku has been
altered very slightly but Chess is an exact copy. There are
strict copyrights on these programs and I don’t think Jan
should take credit for someone else’s program. Could you
please publish this letter in your next issue.to deter other
people from doing the same. |

(c) On page 11 Table XX14 Music program lines 250-630 seem
to be missing.

(d) I think the mag is great but could we have a price list of
software, etc. that’s available from Sega Software Support,
published with each magazine.

Terry Cole, P.O. Box 7140, Te Ngae, Rotorua

EDITOR’S REPLY

(b) As we had not heard of ‘Giant Book of Computer Games’
we were not aware that these programs were from this book.
Agreed — copyright infringement is serious and we hereby
withdraw the reterence to Jan Jacobsen.

(c) Gremlins at work!!

(d) As you will know from the editorial, this is the last issue of
Sega Computer being published by Sega Software Support
— SOrry.

DEAR EDITOR

(a) Can you or your readers give any information on how to
retain titles or sub titles on the screen when using the Hucal
disk eg. when listing down the rows the titles scroll up out
of sight. By using the window function [was unable to scroll
with the columns.

(b) Also is it normal for the screen to change background colour
atter a few minutes when using disk programs? It changes
from the normal program colorus to a grey background.

D. Mudgway, Feilding

EDITOR’S REPLY

(a) It is not possible to retain titles when scrolling down the screen
nor to retain your scroll function when using the window
function.

(b) Sound like you may have a problem with either the disk
drive, computer or the TV set you are using.

DEAR EDITOR

Sega as an RTTY Terminal. | refer to the letter from J. Lindsay
in the Nov 1986/Feb 1987 issue of the magazine in which he
seeks information, software, and circuits for modems or interface
to use the Sega as an RTTY terminal. Presumably by RTTY Mr
Lindsay is referring to a remote teleprinter, in which case I can
assure Mr Lindsay that | have successfully operated my CREED
Model 7b teleprinter from my Sega, writing a REM packed
machine coded program for the purpose and using the printer
socket as an output socket. | also use this socket for my latest
printer. Before [can help Mr Lindsay (even though I will be
temporarily resident in Bangladesh) | must have more details
of the device Mr Lindsay wishes to communicate with, be it a

teleprinter, printer, or another computer. This information must

- be provided by the person at the other end of the communication

link.

[t Mr Lindsay proposes to use the public telephone system-as
his communication link he will either use (a) an accoustic coupler
or (b) a modem. In (a) the telephone receiver can be held close
to the television loud speaker and a suitable program (in machine
code) will send the appropriate noises. In (b) Mr Lindsay will
have to purchase a modem from a computer dealer and have
it approved and installed by the Post Office. Could Mr Lindsay
please supply me with details of such a modem even though
he will not wish to go through the expense of purchasing one
yet. Presumable Mr Lindsay has not got the SF7000 Super
Control Station which is fitted with both a parallel printer output
port and also a RS232 output. [am pretty sure that the serial
printer socket on the Sega can be used as a RS232 outlet, but
need more details of the device at the other end, even if it is
another Sega.

Finally, Mr Lindsay must tell me of the type of information he
wishes to send, ie. programs or data, and how this is arranged,
eg. 128 byte character strings, etc. Letters forwarded to the listed
P.O. Box No. will be forwarded to me in Bangladesh by courier,
usually on Fridays.

PS. It is my intention to prepare programs and instructions in

publishable form, but need to try them out on one or two readers
first.

R.E. Templer,

c/- Worley Consultants Ltd
P.O. Box 4241,
Auckland

'SEGA BASIC REVEALED |

Control codes

The screen origin 1 is at the second column leftward from the BASIC home position 2

e -

The BASIC home position implies the cursor origin; its coordinates to be specified in a

Key operation | PRINT CHR § (Value) ; Function

ICTRL| + (A PRINT CHR $ (1) ; NULL No character
C — BREAK Stops program execution.
E 5 Clears characters after the cursor.
G 7 BELL Makes beep sound.
H 8 _- DEL Deletes a character.
I 9 HT Horizontal tab
J 10 LF Line feed

e K 11 HM Returns the cursor to the home position.
L 12 CLR Clears the screen.
M 13 CR Carriage return.
N 14 Keyboard shift (kana < alphanumeric)
O 15 (¥ Screen shift (text screer: +> graphic screen)
P B 16 Standard character size
Q 17 Characte.r_siz’e doubled horizontally (SCREEN 2)
R 18 INS Insert ¥ -
S 19 Key entry for capital Iette;s (A-Z), no shift
T 20 i Key entry for small letters (a-z), no shift
U _21 ___C-I-l-.'-!-i-ll; _the: current Ii-n-é and returns the cursor to
the left margin.
V 22 Normal mode - | B
w | i 23 GRAPH Shift (key entry graph mode < letter
- mode))

X 24 Click sound setting (on + off) B
Z 26 Printer selection (#1 < #2)

—) | 28 —> Cursor movement

- 29 &= Cursor movement

= 30 {¢+ Cursor movement

= 31 [l Cursor movement -

To specify a control code in t
PRINT CHRS (value).

CHAPTER 3

1. Screen

he program, enter the associated

DISPLAY SCREEN

SC-3000 provides two independent screens which cannot be used simultaneously. Select the

proper screen according to the operation.

Screen 1 Text screen

BASIC initially displays the text screen. Characters can be directly input to this screen. This

screen cannot display the execution results o
statements.

Screen 2 Graphic screen

f graphic statements such as LINE and CIRCLE

Usually, a test screen is displayed and a graphic screen is not visible. Specify a SCREEN state-
ment to display the graphic screen. This screen displays graphics specified with graphic state-

ments. After execution on the graphic screen is over, the program automatically displays the

text screen. To continuously display the graphic screen, set an endless loop in the last line.

2.1 Text scraen configuration

A text screen has a configuration of 38 columns x 24 lines. Use of the two leftmost columns on

Display screen

the screen are restricted, because
some CRTs do not clearly dis-

(g 1 2 40 columns

0
lm Home position I

24 lines

22?
23

3
P, W,

=—— Ordinary cursor movement range —

play this area. Characters can be
738 :D ; . :)
displayed in this area with a
VPOKE statement. The address
of the 'leftmost column on the

screen is as follows:

&H3C00 (hexadecimal)
15360 (decimal)

L l 1

2.2 Coordinatss on text screen

Q) VIR ESHTORD, &HAL or

/ 2 Cursororigin (x =

Al |A

L

VFDRELISIAHB . &5

[l F:'HI._'I

0,y =0) DLRSOR @,0:FFRINT

Coordinates range of CURSOR statement . — o__ 37

y 0~ 23

CURSOR statement are x=0 and y=0.

The actual screen origin is at the second column leftward from the home position; its VRAM

address is &H3CO00 (15360 in decimal notation).
Execute the following statements to check the above:

O WPOKELHICEE, 2HA1 o UETIE

&H41 (65 in decimal notation) is the character code of letter A.

Usually, BASIC uses the home position as its origin. To display characters on the full screen

use a VPOKE statement.

¥

When a PRINT statement is executed on a text screen, characters are displayed from the screen
top. To display characters at the desired positions, move the cursor with a CURSOR statement.
Characters are displayed from the position specified in the CURSOR statement. Determine the

position according to the number of characters.

The address calculations on the text screen are carried out as follows.

Address (text) = y % 40+ x + &H3CO00
where (x = 0~39, y = 0~23)

For the data to be sent, the ASCII code of the corresponding character is applicable (0 ~ 255 in
decimalnumerals and 0 ~ &HFF in hexadecimal numerals).

Example 1.

To specify the position in a CURSOR statement, enter the coordinates in the order of x- and y-

axes.

Example 2.

I3fats 1
Eiéais T
B 10
BEieals [C
Beat T

Eass IE

biea .5y

Variables can be used to specify coordinates in a CURSOR statement. This method is useful

when changing the display position.

Example 3.
1 FiRE. ¥=5 70 15
S8 CURS0R X, Y:PRINT I
W ME)

S p 0

"HALICH

Specify a FOR statement to change only the y-coordinate.

3.1 Graphic screen configuration

A graphic screen configuration is 256 (horizontal) x 192 (vertical) picture elements. Usually,
a picture element is treated as a dot. In graphic screen explanations, both picture elements and
dots are used, but they have the same meaning, except for special operations.

The origin of a graphic screen is at the left-top corner, like for a text screen, but some CRTs

may not clearly display the origin.

3.2 Coordinates on graphic screen

The graphic screen is managed in the units of dots (picture elements). In LINE, PSET, and
CURSOR statements, specify the coordinates in the following range:

0 —x - 250
0
|
}, Effective range of coordinates
| x-axis: 0~ 255
Y y-axis: 0~ 191
191

When displaying characters with a CURSOR statement, the coordinates must be specified so
that the characters are not overlapped on the screen. Since a character consists of 6 (horizontal)
x 8 (vertical) dots, more then 6 horizontal dots and more then 8 vertical dots must be reserved

betwene the specified coordinates.

LB SLPREEN Eaids BLES

.._'-f I:“: o= -[i';']'

Sl FLER Zeld T L &) Lo
G ZLRE0IR £, [LI] S
] 0 I B O B

L8 e S £ N O LN

After characters or graphics are displayed on a graphics screen, this screen is automatically
changed to a text screen. To keep the graphics screen display, specify an endless loop in line 60.

Press the BREAK Kkey to terminate program execution.

3.3 Drawing figures

Draw a line on the screen.
Before drawing a figure on the screen with a LINE or CIRCLE statement, specify the graphic

screen as follows:

SlcREEN oo LS
Write this statement for screen selection at the beginning of the program. The program execu-
tion result can be seen on the graphic screen.
To draw a line, specify the coordinates of the line starting point and those of the line ending
point in a LINE statement. The specified point must be a crossing of the x- and y-axes.

i BEEEEN 24200 5
S LINE(SER, 5D - 015, 150 .8 =—Color number
OG0T 50 (See the COLOR stafemeiit)

, Effective range of graphic

SCreen

For a different line, change the coordinates.
After changing the coordinates or characters with the CURSOR key, press the [CR] key.

4

B specifications: Drawing a box
LIMNE(SH, S8y ~(158, 158 5. H

A LINE statement can draw a box (Zrectangular), in addition to a line. To draw a box, specify
B (box). When B is specified in a LINE statement, it draws a box whose diagonal line is speci-
fied in the same LINE statement.

F specification
LA BE (TS B {158, 158) . 5. 8B
This LINE statement paints inside the box with the specified color.

Drawing a circle

To draw a circle, specify the center coordinates.

See the explanation on the CIRCLE statement for details.

The following statements and commands are valid only on the graphic screen. (They are invalid

on tn text screen.)

SCREEN FOSITION
L INE EL IRNE
CIRCLE ECIRCLE
FSET FRESET
SFRITE MEG

4. Addresses on graphic screen

The PVOKE address at the leftmost end of the screen in.&HQ0000. Data specified at this address
is displayed on the screen. See the explanation on a PATTERN statement for data.

Example
YEOEE LHRQE1 1 YHFF

VIFUOHEE :HA@17 ,255

The graphic screen displayed directly with commands can be seen only for an instance. To see

the screen again, press the !BREAK\ key while pressing the [SHIFT key. The screen is scrolled
down. When these keys are pressed again, the text screen is displayed.

11 t

{ 2

SCREEL 2 CLS
2@ FOR V=@ 70 7
s READ DS

1@ VFOKE LHOR1Q+Y VAL ("&H"+D5
=0 NEXT V |

50 DATA ©1,07,07,0F 1F ,IF ., 7F .FF
70 CV=%HZRE0

20 FOR V=0 TO 7

2@ READ D3

180 VFOKE LHID1D+V+CV ., VAL ("S4" +D%)
110 NEXT V |

12® DATA SF,SF,SF,SF,8F,8F,5F,8F
1Z0 GOTO 130

RUN

crezabk 1n 1736

)

Specify data at addresses &HO010 to &HO0017 to draw a triangle. The color table addresses
begin at &H2000. Specify the color with by color number.

Addresses on graphic screen

Addresses on the graphic screen begins at VRAM address &H0000. An address stores 8-bit data,
divided to four high-order bits and four low-order bits. The high- and low-order bits are indicat-
ed in the binary notation and they are displayed in the hexadecimal notation. Thus, two
hexadecimal digits can be used to write the contents of an address.

High-order bits | Low-order bits Binary notation Hexadecimal notation Decimal notation
g—: 1T 1 0000{0001 01 01
;Jr@_ %_ 1 101001000 A8 1.6 8

The computer can handle both decimal and hexadecimal numbers. &H must be assigned to
hexadecimal numbers. Decimal 10 is equivalent to hexadecimal &HA.

[n VRAM addressing, eight horizontal bits (one byte) has one address. The bytes in the left-
most column are assigned addresses &H0000 to &HO007 from the top. In the same way, the
bytes in the next column are assigned addresses &HOO08 to &HOOOF.

A character or symbol is generated by vertically aligned eight bytes (eight addresses). (See the
explanation on the PATTERN statement.)

Addresses beginning with &H2000 in the color table have one-to-one correspondence with
those beginning with &HO00Q0O.

-

103
20
a6
i
&HEA
B
=)
2
1 -0
1260 VFOFE?SH2ELES L, LS
LA Yok e sH2 A5, RHDF
158 VEFIOFELMHLSHSTE , BHEF
1 &id

VRAM MAP

& HOOOO

& H1800

& H2000

& H3800

& H3BOO

& H3COO

REM

VD
VFOE

Gt o

SEITW R S HT2A G ; g EF
170 VFOEELH2EET, SHOE
130
190
Al

Vo D) B s . 2 HEF
VEOEREYSHID ST L LRHOF
GOTH) TR

VRAM (16K bytes)

LF

YEAM COLOR TEST
M ST T T i
VHDEEZHOOS@ , &A1 3
VEOREESHAAE T, EHETE |
R HAGSD S
6D RHER
JEOFEZ DL S,
VEDEELHOESE | 2HIF
VEOE D& TS MH TR
UPORESHALSE , L HEF
Vi LR H2 50 BHSF

LN

e

Graphic || mode pattern
generator table (6144
bytes)

Note 1

Graphic |l mode

color table (6144
bytes)

Graphic || mode pattern
name table

(768 bytes)

—

Sprite attribute table

(Unused)

- _{L_lnuaed]__

SREEE

Text mode pattern
name table

Pattern generator table (text screen)

1318@

T L 1) it

§

el e "

FOR

e v

A=LH18RAQ+Z25«8 TO ZH

Z2VFOEE ALCoiNEXT

1 G23
1BZ0
124G

iF

GOTO 1010

Sprite generator table (text screen)

=B S5CREEEM 2, Z3ElLS
2918 FOR 4A=uHIg@@+Z24x3 TU LH1IBOA+IZ2%3+

7:YF
ol yelvi
2070
2040
2050
TRAD
2070

OKEE A,255:NEXT
FOR M=0 TO =
MEGH
FOR W= TD 109
SFRITE @, (100,100) ,
NEXT M
GOTO 2900

Screen top-left corner (starting address)

INKEY$=" " THEN C=0
iF INKEY&="Z" THEN C=

_— Text mode pattern generator

.~ =y

L Write data in eight bytes having addresses
&H0650 to &HO657.

The color table begins at &H2000. See

> the explanation on the COLOR statement
for the color numbers.

For text screen

|- table (2048 bytes)

-

For graphic screen

N Sprite generator table (2048

bytes)

(128 bytes)

(960 bytes)

180D+ 22 %5+

: NMEXT W

et ai w At

Screen top-right corner

_ &HO0000 [F&H0008 |F,&H0010,[r [(~&H 00 F 8
&H 000 1 9 ||| &HO0011 \ F9
&H 000 2 A 12 \ FA |
&H 0003 B || 13 A\ F B
&H 000 4 C 1 4 | FC |
&H 0005 D 15 / FD
&H 0006 E 16 (]| / [FE |
&H0007 I F AL 17§, [J &HOOFF
&HO0100 ,|7&H 0109 |,&Ho0110,[~ | | ~&HO01F8 |
&HO0101 ||| &HO110 ||| &HO111 \ &HO 1F 9

&HO11A) 1 ,
| a4)

D R

e N — _/—\

- \

\&eH1700 [~ 1708 |~ 1710,/ // ~&H 1 7F 8
1701 1709 1711 \ \ 17F 9
1702 170A 1712 \ 17FA
1703 1708] 1713]] l 1 7F B
1704 170C 171 4 dJ 17FC
1705 170D 1715 [17FD
1706 170E 1716 |\ 17TFE
1707 170F\) 1717 \| (J&H17FF1

Screen bottom-left

comer

Screen bottom-right corner
(ending address)

C=255 indicates a character code.

VPOKE ADDRESS ASCIlI DATA (Text mode)

e . (0~ 200)
01 2 39 Columns 0 ~ X ~
:.)’ﬁf— W ! mress
* Address (| &10000
&H3C00
(Sideways) (Longitudinal) y
40 digits x 24 columns
= 960 bytes (
TEXT MODE GRAPHIC MODE
Ordinary text mode screen 256 dots x 192 dots/8
38 columns sideways (Sideways) (Longitudinal)
' = 6144 bvtes-
23 _ 191\
SCREEN 1 SCREEN 2

Part of VRAM MAP

The address calculations on the text screen are carried out as follows.

Address (text) = y % 40+ x + &H3CO00
where (x = 0~39, y = 0~23)

For the data to be sent, the ASCII code of the corresponding character is applicable (32~255 in
decimal numerals and &H20~&HFF in hexadecimal numerals).

Note: As shown in the left figure above, the horizontal axis is deviated by 2 columns as

compared to the ordinary text screen. Thus, the display position defined by
CURSOR statement deviates from that defined by VPOKE, by about 2 locations
in the horizontal direction.

VPOKE ADDRESS, DATA (Graphic mode)

Graphic address calculations are carried out as follows.

Graphic address = INT (y/ 8) %256+ INT (x/ 8)% 8+ 1y MOD 8
where (y 1s 0~191 ., x 1S 0~ 255)

T'he address derived from the above calculations is the beginning address of 8 bits (dots) in the

assigned horizontal direction. The assigned address is the x-INT (x/8) bit location counting
from the left of the beginning address.

The data to be sent are hexadecimal or decimal numerals displayed by the bit pattern in a
horizontal row.

Example:

.....

] o> & HO93 (147

E
+++++

Similarly, the color table address for graphic color assignment is derived from the addition of
& H 2000 to the above address. The data to be sent are natural numbers (0 ~ 255) of 1B
(1 Byte). The upper 4 bits of these numbers converted into binary data are the assigned color

number, and the lower 4 bits, the background color number. (The addresses of the graphic
pattern generator table and color table respectively corresponds at 1 : 1).

Graphic color table address

=INT (y/8)%256+ INTx/8)%8
+ vy MOD 8 + &H2000

Where Y150~ 191
X150~ 255

Color data = Assigned color No. * 16 + background color No.
(=15} (0~ 15)

VPEEK

Use VPEEK with reference to VPOKE address. Program to read the content of the pattern
generator table in VRAM.

Example:

10 AD=&H1800+&H31x%8 : REM The beginning address
20 FOR A=AD TO AD+7 of REM " 1" pattern
30 DA=VPEEK (A)

40 PRINT HEX3I(DA)

50 NEXT A

20
6 0 1
2 0
20
20
20
70 1
00 |

SO e Sy e T I

CHAPTER 5 COMMANDS,STATEMENTS,AND FUNCTIONS

This chapter explains the disk BASIC commands, statements, and functions in the alphabetical

order. To know the classification, see the list at the end of this manual.

In the explanation, an expression indicates a functior or variable expression, which may be
different from arithmetic expressions. The explanation on each command, statement, or func-

tion consists of Function, Format, Description, Notes, and See Also.

Function:

Format:

Description:

Example:

Note(s):

See Also:

Error messages are listed in the Appendix. When an error message is displayed, see this list to

Explains the function of the command, statement, or function.

Gives a sample format. The parameters and variables are detailed in the descrip-

tion. Also see sample programs for actual coding.

Example: PRINT A = PRINT variable-name

In the format, complicated symbols are not used for easy understanding. You

can input the format as shown.

Describes the function in details. Also read the explanation on the associated

commands, statements, and functions, if any.

Note that, for programming, a comma (,) differs from a period (.) and a colon

(:) differs from a semicolon (;).
A minus sign (-) also differs from a hyphen and longvowel sign in Kanas.

Understand how commands and statements run, using this example and sample

programs.

Gives programming notes.

Some commands are used in a combination. Such commands and associated

commands are given here.

locate the error.

The sample programs given in this manual can be applied to your own programming by modifi-

cation and linking.

Command

CONT (continue)

Function:

Format:

Description:

Example :

Resumes execution of programs previously interrupted by the BREAK key or
by the STOP statement

CONT

A running program can be interrupted either by a STOP statement placed in the
program or by hitting the BREAK key to see, for example, the content of a
variable. To see the content of a variable, type the direct command PRINT
“variable name” followed by [CR] .

Type CONT followed by [CR] to resume execution.

Note that an interrupted program cannot be resumed its execution if you
modify or add some new lines to it during the interrupt. In such cases, the
message

Can’t continue error

will appear on the screen

1T

1@ FOR I=1 TO 9
20 FOR J=1 TO 9
TR OPRINT I#J3
40 MWEXT J:FRINT
5@ STOFR

&@ NEXT I

FCLIN

1 2 2 45 8 7 &9
Breal: 1n S@
FRINT I,J

1 1
HReady
CONT

2 4 6 8 10 12 14 145 18
Ereak 1n S@

Command

DELETE

Function:

Format:

Deletes parts of a program from memory

DELETE start line number — end line number
deletes the lines between the indicated line numbers inclusively
DELETE — line number

indicated by the line number
DELETE line number —

number up to the oldest
DELETE line number

ber

Deletes lines from the youngest up to the one
Delete lines from the one indicated by the line

Delete only the line indicated by the line num-

Description: Use this command to delete a group of lines at the same time, though there are
some other methods to delete parts of a program described below:
* Type the line number of the line you want to delete and hit the |[CR
Key
* Place the cursor just after the line number of the line you want to delete,
keep pressing the space key until the line except the number is erased
from the screen, then hit the [CR] key
Although you can erase lines from the screen with the space key or with the
'INS/DEL| key, they remain in memory until you hit the CR key. The LIST
command will display the lines you have erased from the screen without hitting
the |CR| key.
Example :
DELETE 180-22
DELETE 250
DELETE &0Q--
DELETE 100
Command LIST
Function: Displays on the screen contents of the program in memory, either partly or
entirely
Format: LLIST .
where the -’ (minus sign) can be replaced by a * . " (comma)
LLIST Display the entire program

Description:

LLIST line number Display only the line indicated by the line num-
ber
LLIST line number — line number
Display the lines between the indicated line
numbers inclusively
LLIST line number — Display from the line indicated by the line
number to the end of the program
LLIST — line number Display from the start of the program up to the

line indicated by the line number

Use this command to look at or modify the program in memory.

Big programs will scroll off the screen while you watch.

Hit the space key to interrupt the flow, and hit it once more to continue the
tlow.

Hit the {BREAK key if you want to abandon the display.

Y ou can modify the content of your program thus displayed (screen edit).

Example :
LI ST
L CLS
~@ FOR N=1 TO 2@
@ FOR M=1 10 N
4 FRINT "#";
S ONEET M
il FRINT
S NEET N
Command LLIST
Function: Outputs to the printer contents of the program in memory, either partly or
entirely
Format: LLIST
LLIST Print the entire program
LLIST line number Print only the line indicated by the line number
LLIST line number — line number
Print the lines between the indicated line num-
- bers inclusively
LLIST line number — Print from the line indicated by the line num-
ber to the end of the program
LLIST — line number Print from the start of the program up to the
line indicated by the line number
Description: Use this statement to printout parts or the entire contents of your programs, for

checking or for preservance.

Example :

LLIST
LLIST 140

LLIST ~190
LLIST 100~
LLIST

1 30— 22A0

Command LOAD

Function:

Format:

Description:

Example :

Loads programs from disk
LOAD “filename”

Display the names of programs on disk with the FILES command. Then move
the cursor to the name of the program you want to load. Type LOAD and hit

the [CR] key.
The program you indicated will be loaded into memory.

FILES s
CoAMFLE 1ibast
YhAMFILE Hebhas!
"HEaMFLE Zibhast

LOAD "DERMD] Lebhas!
b 1 0 b L Swtxas"
DEMLO e e
T EEMLO] 4.bham!
S DI Yo O 2T
CHOUND ZF.TsTH

45k Hytes fres

ME£RGE

|

Function: Merges (joins) a program on disk with the program in memory
Format: MZRGE “filename”
Description: This command merges a program on disk with that in memory and thereby
creates one single program in memory.
Note that line numbers used in one program must not appear in the other. Use
RENUM for this purpose.
For example, if the program in memory has line numbers 10 thru 500, number
the program on disk to be merged starting from 510.
If a same line number appeared in both programs, the contents of the line under
that line number of the merging program would override the other.
Example : FILES
"SAMFLE l1.bas"
"SAMFLE Z.bas"
"SAMFLE Z.bas"
“"DEMO 1.bas"
"DEMO Z2«bas"
"DEMO SZ.bas"
"DEMO 4.bas"
"SOUND 1.T75T"
MERGE"S50UND Z2.T7ST"
49k Bytes free
Command NEW
Function: Deletes programs and resets variables in memory
Format: NEW
Description: If you input lines of a program while there is some other program still in
memory, they get mingled up and may lead to some unexpected result or error.
You must execute this command to delete some previous program from memory
whenever you input a new program.
To see whether there is some program still in memory, use the LIST command.
[f there is one, delete it with this command.
Example:

NEW

Command

NEWON

Function: Sets the start address for the BASIC program area

Format: NEWON start address

Description: This command allocates areas of memory starting from the given address to
BASIC programs, arrays, variables and so on.

Note: You cannot set the address within the area for the BASIC interpreter, work area,
nor in the area higher than the address previously set by the LIMIT statement.
This command, like the NEW statement, deletes state programs currently in
memory.

Example :

NEWON %HCOO0O
Command RENUM (venumber)
Function: Re-sequences the line numbers of a program
Format: RENUM new line number, current line number, increment
Description: RENUM followed by the [CR| key will re-sequence the line numbers starting
from 10 with an increment of 10. The line numbers appearing in a GOTO state-
ment or in a GOSUB statement will be adjusted accordingly.
If you omit increment, it defaults to 10.

Note: If there is a line number that does not exist in the program and yet is referenced .
in one of GOTO, GOSUB, IF-THEN and RESTORE statements, then this
command will cause the Undef’d line number error.

Example :
RENUM
RENUM 100
RENUM Z00,:00
RENUM 00,200,500
Command RUN
Function: Starts execution of a program
Format: RUN Starts execution from the beginning of the program in
memory
RUN line number Starts execution from the line specified by line number
RUN filename Starts execution of the named program after loading it
from disk

Description: Though SC-3000 has a function key for it, this statement is still useful if you
want to execute a program from a given line or execute one of two programs in
memory demarcated by separate line numbers.

Example:

LIST

100 A=1390
118 FRINT A

RUN
120
Ready
KRUN 190

%
Ready

[Command

SAVE

.

Function:

Format:

Description:

Example:

Set also:

Saves the program in memory onto floppy disks
SAVE “filename.extension”

Filename is a name you give to a program to somehow remember its function.
And a program can be saved only after you have christened it.

Either a complete program or a program under development can be saved.

When you create a big program, you can temporarily leave the job by saving
your intermediate result, and later resume the job by loading it back.

Filename is limited to up to 8 characters optionally followed by a ‘.’ (period)
and a 3-character extension.

If you save a program under a name, and if there is a program under that name
on disk, then the program on disk will be replaced by the newly saved one. If
you make some modification to a program that was previously saved on disk,
then choose the same name as that of the program. But if you want to save the
modified program separately, then choose partly different name from the
original one.

This is because, on disk save, the place to where programs go is selected from the
given floppy disk unit.

SAVE "SAMFLE a.TST"

LORD , FILES

l-_ Command

UTILITY

Function: Enters the disk utility program which in turn accepts the following commands
described below
Format: UTILITY |CR
Description: UTILITY commands:
F: Format disks
C: Copy disks
B: DoaBOOT
F: Disk formatting
A new disk can be used only after you have formatted it. Type this com-
mand. Set your disk into the drive and type F followed by [CR]|."
Don’t do anything before the cursor appears on the screen, since inter-
ruption of this command sometimes means disk destruction.
Note also that if you format a disk with some programs still in it, the
programs are deleted.
C: Sometimes, though rarely, a disk may be damaged and become useless
with all its plastic coverage.
You are recommended to take copies of your important programs by this
command against such disaster.
B: Do aBOOT
How to copy your disks
Press the [C| key followed by the |CR] .
Set the floppy disk you want to have a copy of (SOURCE DISK), then
press the space key.
Ten tracks of data will be read into the drive.
Pressing the space key at this time will start the copy. The copy will take
some time. Don’t interrupt the disk unit while copying since it will
destroy the copy.
If you use a disk with some programs already in it, those programs will be
replaced by the newly copied ones.
Repeat the above procedure 4 times to complete the copy on one side.
The message |
copy complete
will appear on the screen on completion of the copy.
Copy uses a different format than that used in save. So although the
BASIC system cannot be saved onto disks, it can be copied there.
Take a backup of your BASIC system by copying it to some disk.
Set alsc: BOOT

|

| Command

VERIFY

N

Function:

Fomnat:

Description:

Example :

See also:

Compares the program saved on cassette and the program in memory
VERIFY *“filename”

This command checks whether the program in memory has been correctly saved
onto cassette.

Rewind the tape upto where you started the save.

Type

VERIFY “filename”

followed by pressing down the | CR| key.

Then push the play (LOAD) key on the tape recorder.

If no difference is found between the program in memory and the program saved

on cassette, the message
Verify end

will appear on the screen.
[f the message would not appear, push the reset key to break the command and
restart from the save.

VERIFY

Verifying start
Found »MXH

* Verifying end

SAVE, LOAD

| Statement

BCIRCLE

Function:
Format:

Description:

Example:

See Also:

| Statement

Function:

Format:

Description:

Example :

Erases lines or circles drawn on the screen.
BCIRCLE (X, Y), radius, ratio, starting point, end point, BF.

The statement is used in the same way as the CIRCLE statement to erase desired
area, though you cannot specify color to this statement.
The color corresponding to bit “0”’ is chosen to erase the area.

19 SCREEN 2,2:CLS

20 FOR R=5 TO 1 STEF -1

@ CIRCLE(128,9@) ,R*10,R,1,0,1,EF
40 BCIRCLE (128,90) ,R%9,,1,0,1,EF
S@ NEXT K

&0 GOTO 60

CIRCLE, COLOR

BEEP

Generates a beep sound
BEEP n

n must be in the range 0 thru 2

BEEP Beep

BEEP 0 Stop beeping caused by BEEP 1
BEEP 1 Keep beeping

BEEP 2 Generate sound like peep poop

1@ DIM A$(12)

20 FOR N=@ TO 12
30 READ A% (N)

40 PRINT A% (N):
S@ BEEP

6@ NEXT N

70 DATA H,0,M,E,"
RUN

HOME COMFUTER

“'!C'IG'.‘M'!P!U'!T'IE'FH

Ready

Description: The statement draws a circle around the given point (X, Y). The arguments to

Statement BLINE this statement are explained as follows:
Radius: The scale for this quantity is measured in pixels (dots. If the
length of the diameter go beyond the maximum value allowed for
Fungion: Erases by line or rectangle.

the coordinate, the part coming outside the coordinate will be
drawn as a straight line.

Format: BLINE (X1, Y1) — (X2,Y2)
BLINE (X1,Y1) — (X2, Y2), BF | Color: Specified by the color code.
_ Radio: Ratio of diameter to the horizontal axis explained as follows:
Description: Colors cannot be specified to the BLINE statement. The color chosen is the |
Is equal to 1 The ratio is 1 to 1 and the circle drawn will be a

color of the background at the time of execution of this statement.
The color of the background corresponds to bit “0”. The BF specification will
erase the rectangular area determined by (X1, Y1) and (X2, Y2).

true circle.

Islessthan 1 . And ellipse will be drawn with its horizontal

diameter greater than the vertical diameter.

Example: The allowable number of decimal places to the
left of the decimal point is restricted to 1 (0.1,
10 SCREEN 2,2:CLS 0.2,...1).
20 FOR R=5 T0O 1 STEF -1
=0 CIRCLE(128,9@) ,R*10,R,1,8,1,BF Is greater than 1 An ellipse with its vertical diameter greater than
4@ BCIRCLE (128,9@) ,R¥*?,,1,0,1,BF the horizontal diameter. The allowable values are
0@ NEXT R 1.1,12,...upto 1.
50 GOTO 60
Starting point:Just imagine a clock. The circumference of any circle is so
measured that the number O corresponds to the position the small
hand points at 3 o’clock, and hence the number increases clock-
See Also: LINE, COLOR wise along with the circumference up to 1 which finally comes to

overlap with the starting point.

You can start drawing beginning from any point on the circle by
specifying a decimal fraction between O and 1.

The fraction can be up to two decimal places.

— — o End point: Can be any decimal fraction between 0 and 1 inclusive. The
Statement CALL - number 1 corresponds to the position the small hand points at
i . 3 o’clock. |
Supply the values like 0.25, 0.75 instead of 1.25, 1.75 since
Function: Calls machine language subroutines values greater than 1 will draw circles past the starting point.
Format: CALL start address
B: Specifying B alone will draw line segments connecting the center
Description: Since machine language programs are placed outside the BASIC program area, of the circle to the starting and the end points. '
you must use this statement to call a machine language subroutine. BE: Specifying F in addition to B will paint the region drawn by the B
specification.
Example:
Omitting
19 LIMIT %HDFFF :CLS arguments: The arguments to the CIRCLE statement can be omitted except
49 FOR A=%HEQQ@ TO HEABZ the coordinate of the center and the radius.
=@ READ D%$:D=VAL ("%H"+D%) If you omit color specification, the color employed by some
Al FURE Aaxb previous statement will be used
S@ NEXT A '
60 CALL *HEQQO If you omit ratio, it defaults to 1.
70 CURSOR 2,2:PRINT TAB(Z@¥KND(1)) 3 "A"
80 GOTO 40O If you omit the starting point specififation, it defaults to O.
1900 DATA FZ,CS5,DS,ES,FS5,06,15,0E
110 DATA ©0O0,CD,ZD,EB,CD,S8,EQ,EB If you omit the end point specification, it defaults to 1.
120 DATA 21,8%,EQ,0E,27,CD,6565,E0Q _ _ -
1Z@ DATA 77.23,0D,20,F8,EE,7D,Cé You cannot specify F without specifying B.
14@ DATA 2B,6F,.20,01,24,CD,56D,EQ
15@ DATA i1 83.E@,QE,27,7E,CD,7D You need type only those arguments you need if you want to
e B ol Y g L Y b/ . . :
17@ DATA E1,D},C1,FR,C?,C5,D5,2 If you want to omit those arguments the positions of which come
180 DATA ©00,58,29,29,29,54,5D,29 between other arguments, you need supply commas to indicate
19@ DATA 29,19,16,00,579,19,11,00 you have omitted those arguments (see example below).
<80 DATA ZC,19,D1,Ci1,C9,DER,BF,C?
210 DATA FS5,CD,55,EQ,7D,D3,BF,7C
Example CIRCLE (X 5
220 DATA E&,IF,DI,EF,F1,C9,00,00 P CIRCLE(X’Y)’SU .
270 DATA 00@,00,DE,RE,C9,FS,CD,S55 (X.Y),50,8,,,,BF
240 DATA EO,7D,D=Z,BF,7C,E&6,ZF ,F&
260 DATA D3,BE,C? 20 FOR X=50 TO 200 STEP S
2@ CIRCLE (X,90),60,1,1,0,1
49 NEXT
58 FOR X=50 T0 200 STEF 5
6@ BCIRCLE (X,90),60
7@ NEXT
|_ Statement CLOADM I
See also: LIMIT :
Function: Loads machine language programs from cassette
Format: CLOADM “‘filename” load start address
L Statement CIRCLE l Description: This statement loads the machine language program on cassette indicated by the

“filename” onto memory. If you specify load start address, load will start from
that address.

Function: Draws circles around given points. If not, it will start from the address as previously indicated by CSAVEM.
If you omit “filename”, the first program encountered on cassette during the
Format: CIRCLE (X, Y), radius, color, ratio, starting point, end point, BF. load will be loaded.

Note:

Example :

The filename must be the one you christened on save, otherwise the message

"“Skip” will be printed and no load will be done.

CLOADM
% [L.poading start

Found ORJ:

HEX DATA

¥ Loading end

Ready

Statement

CLS

(clear screen) l

- Function:

Format:

Description:

Example :

Function:

Format:

Description:

10

Clears the currently active part of the screen

CLS

This statement erases everything, programs and results displayed by the previous
run of some programs, from the current window (the part of the screen which

Is currently active). No other part of the screen other than currently active
window will be affected by this statement.

SCREEN 2,2:CLS

Ready

18 CLS

20 FOR E=@ TO 100

Z@ PRINT Ij

480 NEXT E

Statement

COLOR

Sets color on the screen.

For the text window.

—

COLOR color code for character, color code for background for the graphics
screen.

For the graphics screen
COLORcl,c0,(X1,Y1) — (X2, Y2),cb.

cl:

(X1, Y1) — (X2, Y2)

The color corresponding to bit “1” (clor for characters and lines)
The color applies to
* Characters printed by the PRINT statement
* Points or lines drawn by the PSET, LINE or CIRCLE statements

* Areas to be painted by the BF specification to the LINE or BLINE

statement

The color corresponding to bit ““0’’ (background color)

Which applies to

* The window and the background after execution of the CLS statement.
* The part with bit “1’ reset by the PRESET, BLINE or BCIRCLE

statements.

Paint inside the rectangle having the segment connecting (X1, Y1) and

(X2, Y2) as its diagonal.
The cO argument must be specified.

cb: Color of the backdrop
(Equivalent to “‘transparency’’)
The backdrop is the upper and the lower margins of the screen in which
neither characters or symbols, nor points or lines can be drawn.
“Transparency” corresponds to the color of these margins.
Each color has a code associated with it:

Color Code Table
W Color o Color e Color

0 Transparency 6 Dark red 12 Dark green

1 Black 7 Light blue 13 Mazenta

2 Green (cyane) 14 Grey

3 Light green 8 Hed 15 White

4 Dark blue 9 Light red

5 Light blue 10 Dark yellow .

11 Light yellow

Note:

Additional
Information:

Example :

The unit of area with which color can change from one to another consists of
a horizontal row of 8 successive pixels (pixel is equivalent to picture element,
which is the smallest dot of which characters or figures are comprised). Any area
consisting of a successive row of 8 pixels can contain up to 2 colors including the
color for the background, which means color for points or lines cannot vary
within the area. And if you specify 3 different colors to paint the area, the
entire area will be painted by the 3rd color specified.

Remind this fact when you use the LINE, CIRCLE or the PSET statement.

The above mentioned units are not placed arbitrarily on the screen. On any one
line of the screen, the first unit consists of from O to 7th pixels, next from 8 to
15 pixels, and so on.

You can find in the explanation of the graphics mode for the SC-3000 those
words such as pixel, dot and bit.

A pixel is the least unit of point used to draw figures in the graphics mode.
A bit is the least unit your computer can understand.
A dot is a least unit for drawing pictures under a certain condition.

In the world of the SC-3000 graphics; mode, pixel, dot or bit are usually
synonyms each other.

10 SCREEN 2,2:CLS
0 FOR A=1 TO 12
%@ COLOR A, 15

40 FOR I=1 TO 82:FRINTCHR$ (144) 3 :NEXT
S50 NEXT A

40 FOR C=1 TO 15
7@ FOR Y=0 TO 191 STEF 2
80 COLOR ,C.,(@,Y)- %

R J == =y

)

T g
90 NEXT VY
120 FOR X=0 TO 255 STEF 3
110 COLOR ,C, (X,@)—(X,191)

120 NEXT X,C
170 GOTO &0

[_ Statement

CONSOLE

|

Function:

Format:

Description:

Example :

Sets the cursor scroll limit for the text window, controls the on/off of the click

sound, switching between upper and lower cases for characters, and selects

printer (#1, #2).

CONSOLE u,l,c,s5,p

where
u: Scroll upper limit (0 thru 22)
I: Scroll length (greater than or equal to 2)
c: Click sound on/off (0 = off, 1 = on)
s: Change case (0 = upper case, 1 = lower case)

p: Select printer (1 = printer #1, 2 = printer #2)
At boot time, each value is initialized asu=0,1=24,c=1,5s=0,p =1

The values set by this statement are not altered (including program abort) unless
delivered by the reset key or reset by another CONSOLE statement.
Printer #1 corresponds to the SEGA SP-400

Printer #2 is for a Centronics type printer.

LIST

100 CLS:N=224
110 FOR I=1 TO 7
12@ READ A%

130 GOSUE 260
142 CONSOLE I,N

15@ NEXT I

160 DATA " see SDEE e -
170 DATA "= o w2 e (= a & "
180 DATA "= - & - =
IS0 DATA " i SOBE O S8R & @'
=0@ DATA " & o o i '
210 DATA '@ & B i E [&'
B DATA " fai] TR | &'

270 CONSOLE Q0,24
240 CURSOR 2,1@

25@ END

260 CURSOR 0,27

270 FOR F=1 TO 30

28@ FRINT MID$ (A% ,F,1)::BEEF
29@ NEXT F

T00 N=N-1

%10 FOR J=1 TO N

I2@ FRINT

IIO NEXT J

=A@ RETURN

‘ Statement

CSAVEM ‘ |

Function:

Fomat:

Description:

Example :

Saves machine language programs onto cassette

CSAVEM “filename”, start address, end address

This statement saves the machine language program in memory onto cassette
tapes. Filename in this case is limited to up to 16 characters and has no exten-
sion.

CSAVEM "HEX DATA
¥ Saving start

* Saving end
Ready

"y YHF B0 , XHFFFF

| Statement

CURSOR

Function: Sets the cursor on the specified position J
y
Format: CURSOR horizontal position, vertical position
Description: When used on the text window
horizontal position must be in the range: 0 thru 37
vertical position must be in the range: O thru 23
When used on the graphics window
horizontal position must be in the range: 0 thru 255
vertical position must be in the range: 0 thru 191
In either of the above cases, ranges out of the ones as specified will cause “State-
ment parameter error.”
If you change the origin of a coordinate on the graphics window with the
POSITION statement, the range of the values which can be handled on the
coordinate will also change.
The positive range (with respect to the origin) will now be bounded by maxi-
mum value —specified coordinate , while the negative range by the negative value
of the origin.
The range in this case of course means integer range.
Example:
CURSOR 18,12 ::PRINT "A"
1@ SCREEN 2,2:CLS
20 CURSOR 125,95:FPRINT "A™
See also: POSITION
Statement DATA
Function: Supplied data to a READ statement
Format: DATA numeric value or character string
Description: Multiple number of data can be supplied to this statement as in DATA 1, 2, 3,

4 where comma is used to distinguish each dtatum.
Character strings need not be enclosed in double quotes except

(:),0). (")

which must be double-quoted as shown below:

¥ ¥ ’

If a numeric datum corresponds to a character string variable in the correspond-
ing READ statement, the datum will be regarded as a character string and hence
cannot be used in a numeric expression.

The number of data in the statement and the number of arguments in the
corresponding READ statement must be the same.

If the number of data in the statement and the number of arguments in the
corresponding READ statement, only the data corresponding to the arguments
will be utilized. An error will occur if the number of arguments in a READ
statement exceeds that of the data in the corresponding DATA statement.

The READ statement, once executed, reads data from the corresponding DATA
statement independent of the latter statement’s position in the program.

Example :

LIST

19 READ A,B,C,D
20 PRINT A+B+C+D
102 DATA 1,2,3,4
RUN

10

Ready

See also: READ, RESTORE

I- Statement

DEF FN

Function:

Format:

Description:

Example:

Defines user functions
DEF FN function name (argument) = function definition expression

Function name must be longer than 2 characters including the head “FN

The third character of any function name must be alphabetic, and no reserved
word (such as command names) must appear in it.

(Correct)
(Wrong)

FNA FNB
FNABS FNI

FNCD
FMC

Function names are distinguished only by up to 2 characters following “FN
This means two function names with the same two characters after “FN” are
indistinguishable.

For example, the following two function names

FNSEGA and FNSE

are regarded to be the same.

Also, the value of the argument you supply to your function does not change
after the function invocation.

_ X
sinhx = a ; ,

Let’s define the above functions

18 DEF FNSH((X)=(EXF(X)-EXF(=-X)) /2
280 DEF FNCH((X)=(EXF (X)+EXFP(—-X)) /2

I0 INFPUT "X="3X
490 PRINT "sinh (x)="3;FNSH(X)
S0 FPRINT "cosh (x)="3;FNCH((X)

Function:

Format:

Description:

Declares arrays. Dimension is limited up to 3.

DIM arrayname (subscript range)
DIM A (20)
DIM BS (5,5), DIMC (2, 3, 4)

Arrays are either one-dimensional array or multi-dimensional. Multi-dimensional
array is limited up to 3-dimensional array.
Declaring the one-dimensional array

A (5)

where the number in the parentheses is called a subcript, is equivalent to
declaring the following six variables: |

A(0),A(1),A(2),A(3),A(4),A(5)

Character string arrays can be declared also.

You can use an array element without the necessary declaration but in that case
the subscript range is 10. '
A two-dimensional array

B (5,5)
and a three-dimensional array

C (3,3,3)

11

Example :

LIST

1@ CLS

20 DIM A(9,9)
@ FOR J=1 TO 9
40 FOR K=1 TO 9

S8 A(J,K)=J*K
6@ IF J*E<1@ THEN PRINT" ";
70 PRINT A(J,K):

8@ NEXT K

9@ PRINT

10@ NEXT J

See also: ERASE
Statement END ‘]
Function: Puts an end to programs

Formmat:

Description:

Example:

END

Append this statement to the end of a program if the flow of the program
follows the line number.

But those programs having subroutines at their tail must end somewhere before
the last statement. Put an end to them with this statement.

10 GOSUE 10
20 FRINMTY LEF
2@ END

1900 FOR pN=OG
200 FRIMT"#*"1.28
120 RETLRN

ESSIC STUDY™

Th 7
NEXT N

I_ Statement

— |

Function:

Format:

Description:

Example:

Cancels array declarations

ERASE
ERASE arrayname, arrayname

If you omit arrayname, all array declarations will be canceled.

With a program, you cannot declare arrays twice under a same name. But if
the program flow forces you to do so, use this statement to cancel the former
declaration.

109 ERASE

200 ERASE A,E%

[Statement

FOR—NEXT-STEP

Function:

Formmat:

Description:

12

Repeats lines inserted between the FOR and the NEXT statements

FOR numeric variable = initial value TO final value STEP increment
NEXT numeric variable

You can insert between the FOR and the NEXT statements the part of your
program you want to repeat many times. When the program reaches to the
NEXT statement, the variable gets incremented by the amount you specified just
after STEP, and that part of yours between the FOR and the NEXT statements
is repeated once more.

When the value of the variable reaches to the final value you specified just after
TO, then those statement just after the NEXT statement wil. begin to execute.
If you omit the STEP increment part, the increment defaults to 1.

Note that the increment must be a negative value to “count down” if the initial
value is greater than the final value.

The FOR—-NEXT statement can be nested (you can put a FOR—NEXT state-
ment within another FOR—NEXT statement), but in which case you must use
distinct variables.)
A convenient way is to have the NEXT statement two variables, one for the
inner and the other for the outer FOR, but in that case you must put the
variable for the inner FOR the first.
The depth of one nest can be up to 8.
In the following cases, statements following the FOR statement is executed only
once:

Initial value is smaller than final value and increment is negative

Initial value is greater than final value and increment is positive

Initial value is equal to final value

There is no NEXT statement

LStltomont GOSUB — RETURN

.

Function: Calls and executes a subroutine; after subroutine execution, retums to the line
succeeding the GOSUB statement.
Format: GOSUB line-number
!
RETURN
Description: Line-number specifies the first line number of the subroutine. The subroutine is
an independent program placed inside aqr at the end of the program and is called
when necessary. Specify a RETURN statement specifies returning to the line
succeeding the GOSUB statement.
Control can transfer from a subroutine to another subroutine in a nested sub-
routine structure.
Subroutines can be nested up to level 8; if this is exceeded, a GOSUB nesting
eITOT OCCUTS.
Note: The control returned by a RETURN statement must not go to a RETURN
statement. If a RETURN statement is encountered by a statement other than a
GOSUB statement, a RETURN without GOSUB error occurs.
Example:
12 INFPUT"scare":A
20 IF A-=65 THEN GOSUB 50
Z@ IF A<&6S THEN GOSUB 70
4 GOTO 10
0@ PRINT"acceptable"
60 RETURN
70 PRINT"unacceptable
80 RETURN
See Also: ON GOSUB
\ Statement GOTO
Function: Jumps to the specified line number.
Format: GOTO line-number
Description: Program execution starts from the smallest line number. When a GOTO state-
ment is encountered, the control unconditionally jumps to the specified line
number.
A direct command can specify starting program execution from an arbitrary line |
number specified in a GOTO statement. In this case, the variable value remains
unchanged. The variable value can be known by directly executing a PRINT
variable.
When a RUN or RUN line-number is executed, all variable values are cleared.
Example:

1@ INFUT"A="3A
20 INFUT"B=";E
20 C=A+E

40 FRINT"A+R=":C
o8 GOTO 10

See Also: ON GOTO

‘ Statement HCOPY (hard copv)l

Function:

Format:

Description:

Example:

Outputs to the printer current screen image

HCOPY
HCOPY n, enlargement

This statement lets you printout current images of the text window or the
graphics window.
The function of this statement is governed by the type of your printer:

The SEGA printer SP-400
Only the text window can be printed-out. Also the printable characters are

restricted to the ASCII codes only and the graphics symbols for the SC-3000
cannot be printed.

The EPSON RP-80Il (Centronics type)
Both the text window and the graphics window can be printed-out. Select

printer mode according to the following instructions prior to the execution of
HCOPY: |
o Hit the Z key while keeping down the control key.
o Supply 2 to the CONSOLE statement to select the printer
After you have switched to the printer mode #2, select the window as follows:
HCOPY 1 Printout the text window (1 can be omitted)
HCOPY 2 (Graphics window), enlargement

If you omit n in your program, the window currently active will be printed-out.

The enlargement is explained as follows:
0: Standard (O can be omitted)
1: Double the scale of horizontal direction
2: Double the scale of vertical direction
3: Double the scale of both directions

HCOPY

| Statement IF-THEN |

Function:

Format:

Description:

Example:

Conditionally jumps to the specified line number or executes the statement(s)

following THEN

IF conditional expression THEN line number
IF conditional expression GOTO line number
IF conditional expression THEN statement(s)

If the conditional expression is true, then either the statement placed after
THEN, or the statement indicated by the line number supplied after GOTO or
THEN is executed.

If the condition is false, the line immediately following the IF-THEN
statement is executed.

Conditional expressions are usually comparisons or logical operations. A condi-
tional expression takes the value —1 if the condition is true, and O otherwise.
You can place more than one statement after THEN, in which case those state-
ments are executed only when the condition is true.

1@ INFUT"score ":if
20 IF A<S® THEN FPRINT"unacceptable”
=@ IF A:4%9 AND A<60 THEN FPRINT"borderline’

40 IF A>S9 AND A+<7@ THEN PRINT"acceptable"
S@ IF A>69 THEN PRINT"light staff "

6@ GOTO 10

|_ Statement INPUT |

Function:

Formmat:

Description:

i ——

Gets inputs of numeric values and strings of characters from keyboard

INPUT A, BS numeric or character string variable
INPUT “prompt”; numeric or character string variable

This statement, once executed in your program, waits for your input by putting
a “?"” (question mark) onto the screen. If you supply “prompt,” then the
waiting signal will be “prompt” with no question mark added to it.

Numbers or characters typed in response to the waiting signal (prompt) followed
by the CR key will be assigned to the corresponding variables.

If the statement has more than one variable, the waiting signal for the second
variable and on will be the string of two consecutive question marks (??).

INPUT A,B,C

Character strings need not be enclosed in double quotes.
The statement displays Redo from start and waits for your input once again if it
finds type mismatch between the variable and the data you input.
If you hit just the CR key (without any other characters or numbers) to the
statement’s input request, following values will be assigned to the variables:

0 when the variable is numeric

null string when the variable is character string.
Null string is the string having no characters in it.

Example:
10 CLS
20 CURSOR 1@,Z%:PRINT"menu"
>0 CURSOR 10,6:PRINT"1...drink"
40 CURSOR 10,8:FRINT"2...food "
0@ CURSOR 10,10:PRINT":...dessert"
60 CURSOR 1@,15: INPUT "order 2":A
70 ON A GOSUERE 100,200, 200
80 GOTO »0
102 CURS0R 10,16:FPRINT" "
110 CURSOR 10,16:FPRINT"coffee...$1.00"
120 RETURN
200 CURSOR 10.,16:FRINT" "
210 CURS0OR 1@,16:PRINT"cake... $2.00"
220 RETURN
=080 CURS0OR 10,16:FRINT" .
210 CURSOR 10,16:FPRINT"melon... $Z00"
=@ RETUKN
I Statement LET }
Function: Stores (assigns) the right-hand-side value to the left-hand-side variable or an array
element
Format: LET variable or an array element = numeric expression |
LET character string variable or character string array element = character string
Description: LET is an assignment statement storing the right-hand-side value to the left-
hand-side variable or array element.
Typing, without “LET”
X=35
has quite the same effect as typing
LET X=5
The equal sign ‘=" above does not mean, as does in mathematics, the equality
between the right-hand-side and the left-hand-side.
Example:
LIST
18 LET A==
2@ LET B=5S
2@ LET C=A+E
40 FRINT C
=-@ END
RUN
8
Ready
Statement LIMIT
Function: Sets the end address for the BASIC program area
Format: LIMIT end address
Description: This statement sets the limit for the BASIC program area, and thereby sets the
limit for the user workable area.
You cannot specify an address within the work area for the BASIC interpreter,
nor lower than the address as previously set by the NEWON statement.
After the execution of this statement, you can use freely the area higher than or
equal to the specified address. The BASIC interpreter will not touch this area.
Example :

LIMIT %HFFEE

13

) MAG 2: Double the size of the pictures drawn by MAG 0. 8 by 8 dots’
Statement LINE _ : : +
figures will be drawn in the frame of 16 by 16 picture elements, 1
dot becoming equivalent to 2 by 2 picture elements.
Function: Draws line segment connecting specified coordnates. MAG 3: Double the size of figures drawn by MAG 1. 16 by 16-dots’ figures
will be drawn in the frame of 32 by 32 picture elements by com-
Format: LINE (X1,Y1) —(X2,Y2) color code bining 4 patterns of 16 by 16 picture elements. 2 by 2 picture
where element becomes equivalent to 1 dot.
= hon i i 55
X hﬂn'zuntal cnnrdmalte M P Ege 0 imes Combining 4 patterns to create a figure as in the cases MAG 1 and MAG 3 above
Y = vertical coordinate in the range O thru 191 _ _ : :
can be done with a single SPRITE statement. Since sprite names are synonyms
. . ; : ; for pattern numbers (S#number), you can, for example, let one pattern number
Description: This statement draws the line segment starting from (X1, Y1) and ending at (X2, | :
Y2) among the group S#0—S#3 be a sprite name to automatically construct the
' | —S#3 pattern.
If the origin of the coordinate has been moved by the coordinate to appear, the S-Dic paLies
horizontal distance as well as the vertical distance of these two points must not _ ..
; Note: In cases MAG |1 and MAG 3 above, the possible combinations of patterns are not
exceed the range specified above.
arbitrary.
Additional If you make some ?istake in numbering the patterns, the resulting figures will
' L.
EncEbnlils Drawsareclnpie: be different from what you expec
LINE (X1, Y1) — (X2, Y2), color code, B
The above statent draws the rectangle having the line segment connecting (X1,
Y1) and (X2, Y2) as its diagonal. What is more, you can paint inside the rectangle Figure
by saying: The MAG statement is used to specify the scale of figures drawn by the PATTERN statement.
LINE (X1, Y1) — (X2, Y2), color code, BF In this figure, one picture element corresponds to one bit.
where the color is specified by the color code.
If you omit the starting coordinate (X1, Y1), the draw will begin from the latest
point utilized not only by the LINE statement, but the BLILE, PSET or the 8 bt
PRESET statements. ;
; 1 bit=1 dot
MAGO + :
Example : 8 bit HS#0H
|
18 SCREEN 2,7:CLS -
2 LINE(E@,EE)—(IE@,S@),I
30 LINE- (50,150),8 16 bit —
1@ SCREEN 2,2:CLS ‘[#0 | #2 Four of MAG 0 are combined to
2 FOR C=0 T0O 15 MAG 1 16 bit draw the pattern.
2@ LINE(S0,.50)-(140,100) ,C,E l #1 | #3
10 FOR A=0 TO Z@0B:NEXT A
5SS NEXT C
68 GOTO &0
-— 8 dots —
See Also: COLOR ‘
MAG 2 8 Tts #0 2 bit x 2 bit is deemed as 1 dot.
Statement LPRINT
s 16 dots -
Function: Output to the printer values or character strings =8 32 hat
T BHEH
-1
Format: LPRINT Aor A3 Numeric variable or character string variable m
#2 b
LPRINT AS$:B.C Patterns are drawn by combining
LPRINT “X” Character string MAG 3 16 dﬂ_ts four MAG 2.
L? A The “PRINT” can be replaced with “?” o2 bt
Description: This statement is the same with the PRINT statement except the result is written #1 #3
to the printer. Y
“LPRINT"” can be abbreviated to “L?”.
Note: Refer to the manual for your printer before using this statement since there can Example:
be a variety of specifications among various printers or from interface to inter-
face. 18 REM —--- MAG % FATTERN TEST ——-—
2@ SCREEN 2,2:CLS
>0 PATTERN SHO,"D10ZQ70F IFIF7FFF "
4@ FATTERN S#1,"FFROFFOOFFROFFQQ"
See also: PRINT 2@ FATTERN S#2,"8B0COEQFDFSFCFEFF"
68 PATTERN S#I, "AAAAAAARAAAAAAAA "
70 X=Z2:Y¥=9Q0: XX=0
82 FRINTCHR$ (17)
- 90 MAG M
Statement MAG (magnitude) 190 FOR T=0 TOQ =
110 ELINE(B,l&)—(EES,E4),,EF
120 CURSOR @,@:PRINT" MAG % FATTERN T
ESTH
Function: Sets size and magnitude of sprites 120 CURSOR @,16:FRINT" MAG";M;":PATTE
RN S#";:CURSORZ04,16:FRINT T
Format: MAG numeric value ks SF‘EITE <y (X, Y) ,T,T+1
120 SFRITE B, (X+32,Y) ,T,T+=
L | | | ‘ 160 SFRITE 2y (X+64,Y) , T, T+5
Description: Various sizes of sprites can be set by supplying to the MAG statement integers 178 SFRITE S, (X+9&4,Y) ,T,T+7

in the range O thru 3 182 FOR W= TO 130

17@ SFRITE 1,(160,W) ,T.,14
MAG O: Draws 8 by 8-dots’ figures in the frame of 8 by 8 picture elements 2S00 NEXT W , 1 T

210 FOR WT= O =
MAG 1: Draws 16 by 16 dots’ figures in the frame of 16 by 16 picture 2293 NEXT T 4 TO 108:NEXT WT

elements by combining 4 patterns of 8 by 8 picture elements 230 M=M+1:1IF M=4 THEN M=0Q:T=0
(SHO—-S#3, SH#4—-S#8, . . ., S#253-S#255) 2400 GOTO 90

14

|_ Statement ON GOSUB

Function:

Format:

Description:

Example:

Jumps to one of the subroutines specified by the line numbers according to the
variable

ON variable GOSUB line number, line number, line number

Jumps to one of the subroutines indicated by the line numbers specified after
GOTO according to the value of the variable previously assigned by a numeric
expression or by an INPUT statement.

The value is an integer and must be taken in the range 1 thru the number of line

numbers you specify after GOTO, each integer corresponding to each line
number.

The RETURN statement is used on return from subroutines.

1@ CcL=

28 CURSOR 10,Z5:PRINT"menu”

2@ CURSOR 1@,4:FRINT"1...drink"

4@ CURSOR 1@,8:FRINT"2...foo0d"

2@ CURSOR 10,1@:FRINT"Z...dessert"

5@ CURSOR 10,13 INFUT"order?":0

70 ON A GOSUB 100,200,000 |

830 GOTO 60

103 CURSOR 10, 16:FRINTY u
110 CURSOR 1@,1&6:FRINT"coffee...¥300"
12@ RETURN

200 CURSOR 1@,16:PRINT® L
210 CURSOR 10,156:PRINT"cake... 200"
220 RETURN

00 CURSOR 10,16:FRINT" "
210 CURSOR 10,146:FRINT"melon... ¥250
220 RETURN

Statement ON GOTO l

Function:
Format:

Description:

Example :

| Statement ouT

Jumps to one of the specified lines according to the variable
ON variable GOTO line number, line number, line number
Jumps to one of the lines specified after GOTO according to the value of the

variable previously assigned by a numeric expression or by an INPUT statement.
The value is an integer and must be taken in the range 1 thru the number of line

numbers you specify after GOTO, each integer corresponding to each line num-

ber.
If the value got greater than the number of line numbers, the line immediately

following this statement would be executed.

L@ INFUT"order":A

28 ON A GOTO 100,200,700
20 GOT1T0O 102

180 FRINT "coffee":607T0 10
200 FRINT "cake":60T7T0 10
200 FRINT "milk":60T7T0O 10

RUN
order 71
cottee
arder 2
cake
order 3
m1lk
order
BI‘“E'E'LI-:I i 1@

g

Function:

Format:

Description:

Example :

Outputs data to specified output port.
OUT output port number, data

Output port number are predetermined by the system for outputting data to
external devices.

1@ SOUND 1.,262,0

20 SOunND 2.294,0

2@ SOUND 2,22@0,0

40 FOR A=0 T0O 1% STEF .5

S 0oUT YH7F (:HPO+A: REM

S@ OUT *H7F ,%HBO+A:REM turn ot tone
7@ 0OUT %H7F ,%HDO+A: REM

50 NEXT @A

SO GOTO 40

Statement PAINT
Function: Paints inside or outside areas formed by bits 1.
Format: PAINT (X, Y), color code

Description: Use this statement to paint inside or outside those areas drawn by the LINE or
the CIRCLE statement. But note that even a one-bit hole in such regions will
cause the color wooze out from the hole.

Make sure lines have no break points on them.

Use the RESET key to interrupt or stop the statement since the painting cannot
be interrupted by the BREAK key.

Example:
10 SCEEEN 2., 2:CLS
20 FOR I=@ TO 255 STEF 16
20 LINE(I ,@)—-(I,191):NEXT 1
40 FOR I=@ TO 191 STEF 16
o@ LINE@,I)—(255,1):NEXT 1
6O C=RND(1)%*1646
780 X=RND (1) ¥25&6: Y=RND{1) %192
80 PAINT{(X,Y) ,C
8 6O0TO 560

l Statement PATTERN
Function: Sets character or sprite pattern.
Format: To set a character pattern

PATTERN C# character code, numeric character string where character code
must be in the range 32 thru 255 to set a sprite pattemn.

PATTERN S# sprite name, numeric character string

Where sprite name is an integer in the range O thru 255 which can also be
supplied as a hexadecimal number.

Description: In both of the above formats, the numeric character string must be supplied as a
hexadecimal number.

The format for character patterns differs from that of sprite patterns:

Character pattern (characters and symbols that can be input from the keyboard).
The pattern is constructed out of the 8-by-8 dots’ square (see figure below).

In this frame, the bottom row and the rightmost column are left blank so that
characters do not touch each other vertically and horizontally.

Besides, the rightmost two columns are ignored for character patterns.

So only the first 6 columns and the first 7 rows in the frame are utilized for
character pattemns.

Binary representation Hexadecimal representation
Left Right Left | Right
0111 0000 710
1000 1000 8 I 8
1001 1000 91| 8
1010 1000 Al 8
o o 1100 | 1000 c|s
:iﬁuu S 1000 1000 8 | 8
b] |]]| o111 | 0000 7o
0000 | 00O0O 010
-— 6 dots —J _
e 8 dots Shadowed square = bit 1 Blank square = bit 0

PATTERN C#92 6 "708898A8C8887000 " [CR

Now type

92 in the C#92 above corresponds to the character ‘“¥”’ the ascii code of which
is 92.

Now press the “¥”’ key, and you will see a ““0” appear on the screen.

This means the pattern corresponding to the ascii code 92 has just been replaced
by the one you input with the PATTERN statement.

Since patterns defined in this way remain unchanged until you power-off the
computer or re-boot the system, you must be careful not to meddle the ordinary
keys with your patterns.

If you do that, talking to your computer such as inputting programs will become
much confusing.

Sprite pattern (used only on the graphics window)
Like character patterns, sprite patterns are constructed out of 8-by-8 dots’
square. But unlike them, you can use the entire square for the sprite patterns.

15

Note:

Left Right
1 0000 | 0001 0| 1
dbed 0000 | 0011 01| 3
0000 [0111 0| 7
0000 | 1111 0| F
000 1 1111 1| F
0011 1111 3|F
sEppeekeigiaapeaged 01 11 1111 71 F
ke] 1111 | 1111 F|F
F

_‘

PATTERN S #0, "0103070F1F3F7FFF "

The PATTERN statement uses different formats for character patterns and
for sprite pattems:

C# for character pattems
S# for sprite patterns

See Also: SPRITE, MAG

Designing a pattern

16

Get a sheet of graph section paper and draw an 8-by-8 square on it.
Now shadow appropriate squares in the frame to realize your image of the pattem you
want.

Write sequences of 0’s and 1’s beside each row in the frame following the rule:
a shadowed square corresponds to 1
a blank square corresponds to 0

In this way you get 8 rows of binary numbers, each binary number corresponding to each
row in the frame.

Now divide each binary number in two from the center to get two binary numbers having
4 places. |

You have now 8 rows of 2 binary numbers.

Translate them into hexadecimal using the conversion table given below.

For example, the row

becomes

01110000

the left half of which is 7 in hexadecimal and the right half 0 yeilding *“70”.

Supply the hexadecimal number thus got to the PATTERN statement and you will see,
by pressing an appropriate key, your pattern displayed on the screen.

Use 8 by 8 square for graphics patterns, and 8 by 6 sequare for character patterns.

Conversion Table

10 decimal 2 binary 16 hexadecimal
0 0000 0
1 0001 1
2 0010 Shift 2
3 0011 3
3 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 Shift 1010 A
1 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 =
16 10000 10 Shift

10 PATTERN C#48,">04848484848=000"
20 PATTERN C#49,"2 060202020207000"
2@ PATTERN C#5S0,"708888102040F220"
40 A (D) ="20A8702070AB2000"

50 A% (1) ="0000000000020000"

@ A (Z)=A% (1)

70 CLS

80 FOR E=9 TO = STEF -3
90 X1=19-RB*2: X2=19+BEx*2
100 Yi1=11-R:Y2=11+RE

110 C=0:FOR L=X1 TO X2
120 ¥Y=Y1:X=L:G05UR 260
17@ Y=Y2: X=X2~L+X1:G0OSURE
140 C=C+1:NEXT L

150 C=0:FOR L=Y1 TO Y2
160 X=X1:Y=Y2-L+Y1:B0OSUR
170 X=X2:Y=L:G60SUE 250
18@ C=C+1:NEXT L

190 NEXT E

20 FOR E=0 7O 3:C=0:FOR L=0 TO =
2180 PATTERN C#48,A% (CMOD3)

220 PATTERN C#49,A% ((C+2)MOD3)

2460

260

230
240
250
260
27@

PATTERN C#50,A4% ((C+1)MOD3)
C=C+1:NEXT L.K

GOTO 200 _
VFOKE %HZCO0+X+Y*40,CMODI+48
RETURN

Statement

PSET

Function:

Format:

De cription:

Example:

See Also:

Puts dot on the specified coordinate.

PSET (X, Y), color code

The statement puts dot (a pixel) on the coordinate (X, Y) on the screen.
If you omit color code, the color used by a previous statement will be used.

10 SCREEN 2,2:CLS
20 X=0:Y=95:E=1

2@ PSET(X,Y) ,8

40 X=X+1:¥=Y+E

o8 IF Y=120 THEN E=-1
&0 IF Y=85 THEN E=1
70 1IF X=250 THEN END
80 6GO0TO =0

PRESET, COLOR

Statement READ

Function:

Format:

Description:

Example :

' Command REM

Reads data specified by a DATA statement

READ variable name or array name
READ A or READ A, B, C$

This statement must be paired with a DATA statement.

The READ statement reads the data supplied to a DATA statement placed
anywhere in the program.

The variables to a READ statement can either be numeric or string, but if the

type of a datum to be read differs from that implied by the variable, the mis-
match error will occur.

The READ statement can take a multiple number of arguments as in
READ A, A}, B, B}

but the number of arguments in the statement must agree with the number of.
data in the corresponding DATA statement:

READ A, AS, B, BS

NRE

DATA 10, apple, 5, orange

types of variables

If the number of arguments to a READ statement exceeds that of the data in the
corresponding DATA statement, an error will occur. If, on the contrary, the
number of data in a DATA statement exceeds that of arguments in the corre-
sponding READ statement, the remaining data will either be ignored or read by
the next READ statement.

In case there are more than one DATA statement in a program, the READ state-
ment is used to read them all.

LIST

1@ READ A,E,C,D
20 PRINT A+E+C+D
10@ DATA 1,2,7,4

RUN
10
Ready

See also: DATA, RESTORE

(remarks) l

Function: Marks comment
Format: REM
Description: Use this statement to insert remarks in your program.
The BASIC interpreter will ignore the lines beginning with REM.
Example:

R R
JJJJJJ

10 REM: =
=0 CLLS
20 FPRINT 2+3

CALCIILATOR

(Volume)
Statement RESTORE 0: Switch off the sound

1: Minimum volume

| {
Function: Specifies a DATA statement to be read by the next READ statement 15: Maximum volume

With this statement you can produce amusing sound effects to your games or

Format: RESTORE line number compose and produce melodies. See the following table.

g , Example : T
Description: In a program with more than one DATA statement this statement is used to e LIST

declare that the DATA statement associated with the given line number is to be 1® RESTORE 80

read next. 2@ READ D

If you omit line number, the next instance of a READ statement will read from @ IF D=0 THEN SOUND@:END
the first DATA statement in the program. 4@ SOUND 1,D,15

To read the same data repeatedly, place this statement before the READ state- -@ SOUND =,D*2,11

5@ SOUND =,D%*3,9
7@ GOTO 20
3@ DATA 370,370,392

ment.

If you supply “line number,” the DATA statement specificd by the number will

be read independent of its location in the program. 81 DATA 449,440,792
| 382 DATA 378,330,294
Example : 3- DATA 294,320,274
84 DATA I79,II@,33
hatSAR ' 85 DATA 370,370,392
85 DATA 440,440,392
1@ READ A,B,C,D 97 DATA 372,330,294
=@ DATA 1,2,5,4 | 38 DATA 294,330,379
=@ RESTORE J 29 DATA 330,294,294,0

40 READ E
280 FRINT A+B+C+D+E
This program makes use of synchronized noises.

LN The channel 3 controls frequency while the channel 5 controls volume.
11
Raacy LIST
. 18 FOR I=1500@ TO =00Q@ STEFP 10
Statement SCREEN <@ SOUND 3,1,0
2@ SOUND 5,3,15-ARS(I/100-20)
48 NEXT
F C Is th d th al wind =2 SOUNDa
tion: ontrols the active the vi '
unction active an visual windows ORGAN
Format: SCREEN active window, visual window LIST
| | 1@ REM === doremi -——-
Description: SC-3000 has two independent windows: 20 CLS
1: Text window for program input 2@ PRINTY #la #do re #ta so la #do re
2: Graphics window for graphics display !
The BASIC interpreter initializes both of the windows to 1: 40 FRINT" W R T u 1 0O @ ["
SCREEN 1, 1 2 E LN

6@ PRINT" A S D F 6 H J ¥ L 31 31 13"

You must execute, prior to any graphics commands: :
P Y 8tap 7@ PRINT" la ti do re mi fa so la ti do re mi

SCREEN 2, 2 "
The active window is utilized by the PRINT statement and so on, while the 80 ZE=INKEY$

visual window is for graphics output. 78 IF Z$="A" THEN SOUNDI1 yeel@, 15
The CLS statement erases the active window implied by the SCREEN statement. 100 IF Z4$="W" THEN SOUND1 J2IEE 15
11@ IF Z$="S" THEN SOUND! 247,15
Example : iﬁg %E {%$="D" THEN SOUND1,262,15
o & I$="R" THEN SOUND1,? <
25:55” <y =i CLS 12@ IF Z%="F" THEN SUUNDI:E%E:%E
, 158 IF Z%="T" THEN SOUND1 ,211,15

160 IF Z$="G" THEN SOUND1,Z220,15
170 IF Z%="H" THEN SOUND1 ,749,15
180 IF Z4="U" THEN SOUND1 ,Z70,15
190 IF Z€="J" THEN SOUND1 ,292,15
£L08 IF Z%="1" THEN SOUND1 oy 355
Statement SOUND ' 210 IF Z$="E" THEN SOUND1 :jiaz :;
220 IF Z4="0" THEN SOUND1 466,15
<@ IF Z%$="L" THEN SOUND1 ,494 ,15
Function: Generates sounds having given frequencies Eiﬁ +F E$= N :: THEN SOUND1 , 523, 15

o8 IF Z%="@" THEN SOUND1,554,15

260 IF Z%=":" THEN SOUND1 ,587,15

Format: SOUND channel, frequency, volume =7@ IF Z%="[" THEN SOUND1,&27 « 15
28@ IF Z%="1" THEN SOUND1 ,659,15
Usage: SOUND 1, 1000, 15 {CR 2780 IF Z%="" THEN SOUND®
Ready 208 GOTO 80
Description: (Channel) Frequency Table
Each channel corresponds to a certain fixed tune.
By mixing the first three channels, you can play a trio. Notes £1 £2 £3 f4 f5
: C do f 131 262 523 1047
Channel Function c# Db 13
0 Turn off the sound ' 2 277 924 L
1 Generate ordinary notes D i g aid <94 °87 1175
2 Generate ordinary notes D#, Eb 156 311 622 1245
3 Generate ordinary notes control frequency when the channel E mi a 165 330 659 1319
j ' 5
Specitlec st ory F fa b 175 | 349 | 698 | 1397
4 Generate white noises F% Gb - 5
S Generate synchronized noises ' 1 70 740 | 1480
G SO C 196 392 784 1568
(Frequency) G#, Ab 208 415 831 1661
Specify desired frequency if the channel selected is 1, 2 or 3. A la d 110 220 440 880 1760
If the selected channel is 4 or 5, specify one of the integer among O thru 3 A# Bb 117 233 466 932
according to the following description: B & P 123 247 494 088
0 thru 2: Each corresponds to a predetermined frequency
3: Frequency is controlled by the channel 3 Unit: Hz

17

Note 2: Although each sprite window can have one color, you can combine from 2 to 4
Statement SPRITE windows to create a, say, 4-colored character.
In case you must put multiple number of sprite windows on a same horizontal
line, plan them carefully reminding the note 1 above.
Function: Moves sprite patterns on the screen.
Example: 1 M=1
, . : : 2@ SCREEN 2,2:CLS
Format: SPRITE sprite window, (X, Y), sprite name, color code. =3 MAG Mz C—END (1) %17+1
40 CURSOR 10,10:FRINT CHR€ (173 "MAG"; M
Description This statement is used to move figures constructed by the PATTERN statement =@ FOR Y=0 TO 191 STEF 4
to the specified coordinate on the screen to construct a sprite pattern. L0 FATTERN S#0,"Q0193FZCI1CODAF7R"
No re-definition of pattemns is needed. 70 FATTERN S#1,"0COFQFGFA/0QZ1EAT7"
The arguments to the statement are as follows: 80 FATTERN 5#2,"@0CCFEYE?CD8/8EC"
0 FATTERN S#Z,"1AFAFBFREC7CZE8A"
Sprite window: | 1@ Y1=Y:GOSUR 190
An integer in the range 0 thru 32 each corresponding to one sprite window. 1180 FATTERN S#HO,"QQ1ZFZC1CADAFLIR"
A window with a lower id number is placed in front of a window with a higher 1.0 FATTERN S#1,"2C2FOFQ71RB1FREGO"
cd HiBEE. 128 FATTERN S#2,"Q0OCCFEECDB878EF"

1480 FATTERN SHZ,"18FQFSFBFB450&6C70"
150 Y1=Y+2: GOSUR 120

- 160 NEXT Y
o . 17@ M=M+2:IF M:3 THEN M=1
Graphic screen

182 GOTO 20

. ="
=
- "
-
llll
- ®
[
LR
-

200 SPRITE @, (170,Y1+1).0,C

5 19@ SPRITE 0, (120,Y1),0,C
/
Al ,-E_:b 5 e // 210 RETURN
0 / Graphic screen 0 ~ 31

— See Also:

>

PATTERN, MAG

TV screen

Statement STOP
Sprite name:
This is the number you supplied to the PATTERN statement.
A sprite name can be used on more than one sprite windows. Function: Interrupt execution of a program for a while
The number of sprite patterns can be up to 56 and 32 of them can be simultane-
ously displayed onto the screen. Format: STOP
Color code:
Gheus st fias. o solon, Description: Insert this statement into a program that bel}aves other than you expect. It will
temporarily suspend execution of the program right where it was inserted.
Coordinate: By inserting this statement to various part of the program, you can keep an eye
If you move sprites rightward with the horizontal range exceeding 255, they will on the intermediate results step by step, and thus can find out what’s wr ong
reappear from the left border of the screen, and this is the intended result. with the program.
Remind this fact when moving figures horizontally. | For exampie, typing

In case a sprite moves leftward beyond the left margin of the screen, the sprite
window is shifted to left by the amount of 32 pixels and the sprite is entirely

PRINT *“variable name” |CR

erased from the screen. will show you the intermediate value of the variable indicated by ‘“variable
In this case you are recommended to set a left margin in your coordinate since name.”
continuing the move will cause the “Parameter error”. If you interrupt a program with this statement, the message

Break in “line number”

32 pixels
. will appear on the screen.
3\ The CONT statement will resume execution of the program right from imme-
diately after the STOP statement if you didn’t modify it.
> 192 pixels Example : LIS
1@ FOR I=1 TOQ 9
o e | 20 FOR J=1 TO 9
. — J _ 20 FPRINT I®Js
255 pixels 4@ NEXT J:FRINT
=3 STOP
Note: The dotted line indicates the sprite HE@ NEXT I
window shifted by the EC (Early
Clock) bit. FeLIN
1 2 2 4 5 6 7 89
o Break 1n S@
The origin of the 8-by-8 frame regarded as a coordinate for character patterns ERINT I..
is on the uppermost, extreme left, which is also the case for sprite windows. 4 | 10
H'E‘Eld‘f
CONT
0 x 255 24 68 10 12 14 16 18
of \\ . Break 1n o
E
y o
. aail [Statement VERIFYM |
191
The SPRITE statement has the nice characteristic of being able to put figures in Function: Compares machine language programs saved on cassette with the program in
front of or on the back of others by drawing them on different sprite windows. GOy
A sense of perspective can easily be introduced into your graphics pictures by
. Format: VERIFYM “filename”, verify start address

utiliziﬁ'g this characteristics intelligently.

Description: This statement compares the machine language program on cassette indicated by

Note 1: Although you can display up to 32 sprite windows simultaneously, only up to 4 “filename” and the program in memory. The message “Verify end” will be
windows can be placed on the same horizontal line (rastor) and the 5th window, displayed if no difference has been detected between the two programs. If you
if supplied, becomes invisible blocked by the former windows. But since specify the verify start address, the comparison will start from that address. If
windows are blocked not by sprites, but by dots, if you move the 5th window not, it will start from the address as previously indicated by CSAVEM. If
vertically, the window will begin to be blocked and reappear dot-wise on the “filename” is omitted, comparison will be done between the program in memory
sCreern. and the first machine language program found on the cassette.

18

Note: Filename must be the one you christened on save. :

Character String Function: ASC (ascii)
Example:
VERIFYM _ Function: Converts characters into corresponding numbers (ascii codes)
* Yerifying start
*F 3;:? £ ?E;ﬂ q EEZ e Format: ASC (character constant or character variable)
Ready Only the first character of any string constant more than one character long will
be converted
Statement VPOKE Description: Computers don’t understand characters and symbols as the way human beings
do. They only understand numbers.
The way they understand characters and symbols, they have a set of numbers
Function: Writes data to the VRAM (Video RAM) ranging from 32 thru 255 within them, each number corresponding to each
character and symbol on your keyboard.
Format: VPOKE address, data In this way they can distinguish the character A (which 1s 65 from the com-
puter’s point of view) from the character B (66).
Description: By writing data into the VRAM, you can draw characters or figures on the screen. Even though you supply a character string more than one character long, as in
The same with the text window. 7 ASC (“BA”)
Exairiple : this function only outputs the number corresponding to the first character of
the string and ignores the rest.
1@ FOR A=LHIC80 T0O LZHIFDRF \
;’EEJ VPOKE A,&4 ; Example: Sort names in alphabetical order according to the first character of the names.
@ NEXT A _ .
: On RUN, displays corresponding ascii codes to the input characters and symbols.
/
10 E=%H1BO0+I2%S PRINT ASC (“A") [CR] |
~0 FOR A=E TO E+7 65 « the ascii code for ‘A’ is 65
R VPOKE &,255 PRINT ASC (“!™) |CR
4@ NEXT A 33 « the ascii code for ‘!’ is 33
S0 FOR C=0 T0O 1@0@:NEXT
H@ FOR A=E T0O BE+7 ')
70 VPOKE A, 0 1@ INFUT A%
Q@ NEXT A - 20 O=ASC (A%)
Q0 FOR C=@ T0 10@:NEXT TR OFRINT @
100 GOT0 &@ 4@ GOTO 1@
10 FOR V=15Z&0 TO 135700 See also: (CHR3Y)
@ CURSOR 18,@:FRINT"VRAM ADDRESS"V
0 X=@:¥Y=1U
40 VF=VFEEK (V) RURE
50 VPOKE V+X+Y*48, VI | 1@ INFUT "number of DATA":N
L0 X=X+1:IF ¥=58 THEN X=@:Y=Y+l 20 DIM A% (N) *
T NEXT YV 2@ FOR I=1 TO N:READ A1) :NEXT |
4@ D=N
o D=INT(D/2)
68 IF D=1 THEN 138
Arithmetic Function ABS (absolute) 7@ DD=N-D
80 FOR kK=1 TO DD
2@ J=k
Function: Gives the absolute value for the arithmetic expression X 100 IF ASC(A%(J)) =A8C (A% (J+D)) THEN 160
110 N$=A%(J)
120 A (J)=A$ {J+D)
Format: ABS (X) 17@ A% (J+D)=N%
14 J=J-D

Description: The absolute value of a value is the same with the value if the value is positive, 1=; I J-=1 THEN 100
and is equal to the negative of the value if the value is negative. 160 NEXT K

170 G6OTG S@
Example : 180 FOR I=1 TO N:FRINT 1,A®(I):NEXT I
200 DATA SUN,MERCURY,VENUS,EARS
21@ DATA MOON,MARS ,JUFPITER ,.SATURN

FRINT ABS(-35) 220 DATA URANUS,NEFTUNE,FLUTO

- 220 DATA ASTEROID.MILEY WAY ,GALAXY
Ready RLIN
number of DATAl4
1 ASTEROID
2 EARS
Y (] i —_ .
FRINT ABS(Z#(—-5)) - GALAXY
,18 , 4 JUFITER
Ready = MRS
& MOON
| 7 MILEY WAY
Arithmetic Function ACS (arc-cosine) g MERCLURY
7 NEFTUNE
10 FLUTO
11 SUN
Function: Gives 8 in COS (8) inverse cosine function 2, SATURKN
1= URANUS
Format: ACS (X) X must be in the range -1 thru 1 14 : VERMNUS
Ready
Example :
1@ FOR S=—-1 TO 1 STEF .5
20 X=ACS(S) |
};g ;’:?i? (;J v Arithmetic Function ASN | (arc-sine)
e TR ,
S0 NEXT S
U
Z. 14159269536 i Eg Function: Gives 8 in SIN (8) inverse sine function
. A945951024 2
AT O L T L .
jl - 5;% ; zi.;:?? ;g Format: ASN (X) X must be in the range ~<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>